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We present a dissipative algorithm for solving nonlinear wave-like equations when
the initial data is specified on characteristic surfaces. The dissipative properties built
in this algorithm make it particularly useful when studying the highly nonlinear
regime where previous methods have failed to give a stable evolution in three di-
mensions. The algorithm presented in this work is directly applicable to hyperbolic
systems proper of electromagnetism, Yang–Mills, and general relativity theories.
We carry out an analysis of the stability of the algorithm and test its properties
with linear waves propagating on a Minkowski background and the scattering off a
Scwharszchild black hole in general relativity.c© 1999 Academic Press
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I. INTRODUCTION

When modeling nonlinear problems, dissipative algorithms have provided researchers
with an extremely valuable tool since usually most nondissipative schemes fail to produce
a stable evolution. More precisely, when using neutrally stable algorithms, instabilities
often arise which spoil the evolution. The addition of artificial dissipation removes these
instabilities by “damping” the growing modes of the solution in a somewhat controlled way.
Therefore, its inclusion in a discretization scheme provides a practical and economical way
of achieving longer evolutions.

The most widely used algorithms with this property are the family of Lax schemes
[1], whereby adding to the equationu,t =−au,x a term proportional tou,xx one obtains a
stable discretization of the system that would otherwise be unstable. However, one might
correctly ask whether this is not tantamount to solving a completely different problem. The
beauty of these methods is that the proportionality factor depends on the discretization size,
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and in the continuous limit the approximation to the modified PDE results in a consistent
approximation to the original one.

Although there is much experience with these kinds of schemes, most of the standard
dissipative algorithms have been tailored for Cauchy initial value problems, where ini-
tial data is provided at one instant of time and evolved to the next instant by means
of the evolution equation. However, in radiative problems, it is sometimes more conve-
nient to choose a sequence of hypersurfaces adapted to the propagation of the waves,
and therefore, one adopts a foliation adapted to the characteristics of the PDE under
study.

In the present work, we present a new algorithm adequate for hyperbolic systems. The
underlying strategy of the proposed algorithm is quite different from the conventional
Cauchy-type methods. Rather, it is inspired by analytical concepts developed in the 1960s
[2–4] for studies of gravitational radiation in general relativity and in their subsequent
numerical integrations.1 The main features of this approach are the use of characteristic
surfaces (for the foliation of the spacetime) and compactification methods (that enable
the inclusion of infinity in the numerical grid) to describe radiation properties. Although
evolution algorithms (for systems possessing some kind of symmetry) developed within
this approach proved to be successful in the linear and mildly nonlinear regime [6–8], they
produce unstable evolutions when applied to the general case, which shows the need for
devising algorithms that could be applied in this situation. In the present work we present
a new algorithm having dissipative properties, making it a valuable tool to study systems
where strong fields might be present.

In Section 2 the details of the algorithm for the wave equation are presented and its
stability properties discussed. Section 3 is devoted to treat a model problem which shows
how the dissipative algorithm might be a useful tool for numerical investigations in general
relativity. Finally, in Section 4 we describe two particular applications of this algorithm in
the numerical implementation of general relativity.

II. THE ALGORITHM

Waves of amplitudeg traveling in one spatial direction with unit speed obey the familiar
equation

g,t t − g,xx = 0 (1)

which can be solved in the regionR={(t, x)/t ≥ t0, x ∈ R}, assumingg(t = t0, x) and
g,t (t = t0, x) are given. If, instead, one is interested in solving the problem restricted to the
regionx ∈ [a,∞), boundary data must also be provided corresponding tog(t, x=a). The
analysis of this problem can be described in a simple way in terms of the characteristics of
this equation, which are given by(x− xo)=±t through each spatial pointxo.

In particular, when solving Eq. (1) in the regionRC . The domain of dependenceDC of
a point(t1, x1) is given byDC =SC ∩RC , with SC naturally defined by the characteristics
passing through(t1, x1) as

SC =
{
(t, x) such thatt ≤ t1 and(t − t1)

2− (x − x1)
2 ≥ 0

}; (2)

1 For a detailed account of the developments in the characteristic formulation see [5].
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RC is the region to the future of

• the linet = t0, or
• the region defined by [a,∞) or x ∈ [a, b] (wherea∈R). In these cases, boundary

conditions must be imposed atx=a (andx= b in the latter case).

Suppose one introduces a coordinate system adapted to the characteristics by, say(u=
t − x, r = x); then, Eq. (1) reduces to

2g,ur − g,rr = 0. (3)

Further, one can then choose to foliate the spacetime by a sequence of characteristics
obtained by holding the (retarded) timeu= const. One can then define acharacteristic
initial value problem, where Eq. (3) is solved, provided thatg(u= uo, r ) is given. (Note
thatg,u(u= uo, r ) need not be provided as in the Cauchy initial value problem).

It is straightforward to check that a solution of Eq. (3) is expressible asg(u, r )= F(u)+
G(u+ 2r ) (whereF andG are smooth functions). Physically,F(u) describes waves prop-
agating in the+r direction (outgoing waves) andG(u+ 2r ) describes waves propagating
in the−r direction (incoming waves). Then, if one imposes the condition of pure outgoing
waves, the solution must be of the formg= F(u); hence, along each characteristic the
value of the function is constant. Notably, boundary data atr = 0 can be given arbitrarily
since purely outgoing waves atu= u0 will not reachr = 0. More generally, boundary data
consistent with the incoming waves must be prescribed atr = 0.

It is important to note the domain of dependence for this problem. When solving Eq. (3) in
the regionRc, the domain of dependence(Dc)of a point(u1, r1) is defined byDc=Sc∩Rc,
where

Sc =
{
(u, x) such thatu ≤ u1 and(u− u1)

2+ 2(u− u1)(r − r1) ≥ 0
}
. (4)

However, if the regionRc is chosen to be the future of the lineu= u0,Dc extends indef-
initely to the past. Therefore, the characteristic approach requiresRc to have a boundary.
Thus, one definesRc as the region(u≥ uo, r ∈ [a,∞)) (with a≥ 0). Figure 1 illustrates
the domains of dependence corresponding to each formulation.

For hyperbolic systems with two or more spatial dimensions, the manner in which the
characteristics determine the domain of dependence and lead to evolution equations is
qualitatively the same. Also, the use of coordinates adapted to them provide a tidy way for
studying the system. For instance, in three dimensions, the wave equation is given by

9,t t −9,xx −9,yy−9,zz= 0, (5)

which, in term of spherical polar coordinates(t, r, θ, φ) has the form

r9,t t − (r9),rr − L29/r = 0, (6)

whereL2 denotes the angular momentum operator

L29 = (sin(θ)9,θ ),θ
sin(θ)

+ 9,θθ

sin2(θ)
. (7)
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FIG. 1. Domains of dependence in the Cauchy and characteristic initial value problems.

Introducing coordinates(u= t − r, r, θ, φ) which define a natural inner boundary atr = 0,
Eq. (6) takes the form

2(r9),ur − (r9),rr = L29

r
. (8)

Thus, by definingg≡ r9 and consideringL29/r as a source term, Eq. (8) formally looks
like the one-dimensional system. Therefore, from now on we restrict our analysis to this
latter case and extend our results to the three-dimensional case in Section 4.

The formal integration of (3) proceeds by an integration in ther direction on each
u= const surface and then evolves to the next level. This reformulates the integration in
the characteristic formulation as an “evolution” in the radial direction and then another
in the u direction (as opposed to the evolution of a “whole” instant of time to the next
one typical of the Cauchy evolution). Hence, standard dissipative schemes intended for
Cauchy-type evolutions (like the family of Lax algorithms) are not directly applicable in
the characteristic formulation of the PDE and the addition of artificial viscosity to the system
must be reformulated.

In the numerical implementation of Eq. (3) a useful discretization was introduced in [9].
This scheme is basically a second-order approximation based on finite difference techniques.
Assuming the grid discretization is given byun= n1u andri = i1r , the derivatives may
be discretized as

gur |n+1/2
i−1/2 =

gn+1
i − gn+1

i−1 − gn
i + gn

i−1

1u1r
, (9)

grr |n+1/2
i−1/2 =

gn+1
i − 2gn+1

i−1 + gn+1
i−2 + gn

i+1− 2gn
i + gn

i−1

1r 2
. (10)

The resulting scheme (which we will refer to as GIW) is a second order in time, second
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order in space accurate algorithm. Notably, the Von Neuman analysis shows that the GIW
scheme has a unitary amplification factor (i.e., a neutrally stable algorithm), independent
of the values of1u and1r . This would imply that the algorithm is unconditionally stable
which is, at first sight, puzzling. This might be explained by the implicit local structure of the
algorithm (since it involves three points at the upper time level) and, as such, a local stability
analysis need not give a condition on the discretization size. Nevertheless, the algorithm is
globally explicit as the evolution proceeds by an outward march from the origin. Hence, the
algorithm does require the enforcement of the CFL condition to ensure that the numerical
and analytical domains of dependence are consistent.

The CFL condition for the system can be easily obtained. The field at the grid point at
(u1, r1) depends critically on the field value at(u1−1u, r1+1r ) (since all the points,
where 0≤ r ≤ r1, are trivially included in the discretization). The requirement for the
numerical domain of dependence to include the analytical domain of dependence is1u2−
21u1r ≤ 0; therefore, the CFL condition will be satisfied if1u≤ 21r .

The GIW algorithm has been employed successfully in the characteristic formulation
of general relativity (G.R.) assuming either spherical symmetry [9, 10], axisymmetry [6],
or very small departures from spherical symmetry [7]. However, when considering more
general problems, as is often the case with neutrally stable schemes, roundoff error or
parasitic modes are enough to cause ripples in the solution which often lead to an unstable
evolution. As stated earlier, adding dissipation to the PDE constitutes a way to alleviate this
problem [1]. We now show that a rather simple modification of (3) can be used to obtain a
consistent discretization with dissipative properties.

We start by considering the equation

2g,ur − g,rr + 4/3ε
1r 2

21u
g,rrr = 0 (11)

(the 4/3 factor is included for convenience). A straightforward discretization of (11) is
obtained by the described approximation forg,ur (9) andg,rr (10) and by approximating
the third derivative at the point(n, i − 1/2) as

g,rrr |ni−1/2 =
1

1r 3

(
gn

i+1− 3gn
i + 3gn

i−1− gn
i−2

)
. (12)

In analogy to the Lax method, the inclusion of this extra term leads to a consistent dif-
ference approximation of Eq. (3); this is, the difference approximation converges formally
to the differential equation in the limit(1u,1r )→ 0. In fact, it is straightforward to check
that the resulting approximation is accurate of order{O(1r 2),O(ε1t)}.2 An important
feature of the resulting algorithm (which we shall call DA) is its dissipative features, which
make it particularly useful. The stability properties of this algorithm can be easily obtained
by introducing Fourier modes such thatg= esueik j/1r . After some algebra one obtains

S(i + 2α sin(k1r/2) e−ik1r/2)

= i

(
(1− ε)+ 4

3
ε(4 cos2(k1r/2)− 1)

)
− 2α sin(k1r/2) e−ik1r/2, (13)

2 Contrary to the Lax method which exhibits strict second-order convergence in space and time.
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FIG. 2. The characteristic scheme for the exterior problem. Initial data is given onNo and boundary data on0.

whereS≡ esu andα=1u/(41r ). Therefore, the equation governing the growth of the
solution’s modes is

|S|2 = 1+ 4ε sin2(k1r/2)

3(1− 4α(1− α) sin2(k1r/2))
(−2+ sin2(k1r/2)(4α + 4/3ε)). (14)

Now, since 4α(1−α) sin2(k1r/2)<1 (for α <1/2) the scheme will be stable if, 0≤ ε ≤
3/2(1− 2α). Moreover,|S|< 1 ask→π/1r , indicating that the high frequency modes are
effectively “damped,” while|S|→1 ask→ 0.

The obtained discretization can also be thought of as an approximation to the original
equation (3) (i.e., without the addition of the extra term), where the finite differencing of
g,ur includes four points on thenth level as

gur |n+1/2
i−1/2 =

g,r |n+1
i−1/2− g,r |ni−1/2

1u

= gn+1
i − gn+1

i−1

1u1r
− (1− ε)

(
gn

i − gn
i−1

)+ ε(gn
i+1− gn

i−2

)/
3

1u1r
, (15)

which can be regarded as a weighted average of the derivatives at(n, i − 1/2) obtained from
field values at the points{(n, i ), (n, i − 1)} and{(n, i + 1), (n, i − 2)}. In the next section,
we illustrate how this algorithm produces a stable discretization when the original strategy
(corresponding toε= 0) fails.

III. APPLICATION IN A “TOY PROBLEM”

In this section we study the stability properties of an equation bearing close resemblance
to the nonlinear evolution equation encountered in the characteristic formulation of general
relativity (which will presented in the Section IV),

2G,ur − G,rr = GG,uG,r . (16)

In order to keep track of the nonlinearity of the equation, we introduce the parameterλ

(with λ ≤ 1), such thatG≡ λg; hence, Eq. (16) becomes

2g,ur − g,rr = λ2gg,ug,r . (17)
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In particular, note that the principal part of Eq. (17) corresponds to the wave equation.
Also, it reduces in the the linear case(λ2= 0), to the wave equation. Consequently; one
might expect the GIW discretization to lead a stable scheme.

However, this is not the case, as can be demonstrated by the following analysis. First,
in order to simplify the study of the stability of this nonlinear problem, welinearize the
PDE with respect to the previous time step[1] to obtain a more manageable equation. In
this linearization, we approximate the values ofg andg,r with respect to thenth level, but
g,u is centered in between the levels. The resulting finite difference approximation is

gn+1
i − gn+1

i−1 − gn
i + gn

i−1+
1u

41r

(−gn+1
i + 2gn+1

i−1 − gn+1
i−2 − gn

i+2+ 2gn
i − gn

i−1

)
= λ2 1

8

(
gn

i + gn
i−1

)(
gn

i − gn
i−1

)(
gn+1

i + gn+1
i−1 − gn

i − gn
i−1

)
. (18)

Finally, we introduce the Fourier modesg= esueik j1r and solve for|S|2, obtaining

|S|2 = 1+ 16αλ2 sin(K )2(1+ cos(K ))

D
, (19)

whereα=1u/(41r ), K = k1r , and

D ≡ 16+ λ4(1+ cos(K ))2− 8λ2(α sin2(K )+ cos(K )(1+ cos(K )))

+ 32α(1− α)(cos(K )− 1). (20)

It is not difficult to check thatD is a positive quantity for

0< α ≤ 1

2
− λ

2

8
+
√

48+ λ4− 40λ2

8
(21)

(which will be the case if the CFL condition is satisfied). Thus, the value of|S| is always
larger than 1, indicating that this discretization isunconditionally unstable! It is remark-
able that the simple addition of some nonlinear terms, even when they do not change the
equation’s principal part, completely break an algorithm that would otherwise be stable.

We now modify the wayg,ur is discretized by introducing dissipation as dictated by the
DA scheme, i.e.

g,ur = 1

1u1r

(
gn

i − gn
i−1− ((1− ε)gn

i − gn
i−1+ ε

(
gn

i+1− gn
i−2

)/
3
)
. (22)

With this simple modification, the value of|S|2 now becomes

|S|2 = 1+ 4(cos(K )− 1)N

D
, (23)

where

N = −4αλ2(1+ cos(K ))2+ ε(4+ ε(cos(K )− 1)

+ λ2 cos(K )(cos(K )+ 1)+ 4α(cos(K )− 1)). (24)

SinceD> 0 and cos(K )− 1≤ 0, the condition for stability is thatN ≥ 0. Givenα, this is a
condition onε, or vice versa. For instance, ifα= 1/8 andλ= 2−1/2, the discretization will
be stable if 0.3 ≤ ε≤ 1. On the other hand, if we chooseλ= 1 andε= 1/4, N ≥ 0 will be
satisfied ifα ≤ 1

8. Figure 3 shows the value of|S| for different choices ofε for a givenλ;
the effect of the added dissipation can be clearly seen.
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FIG. 3. Plots of |S| corresponding to different choices ofε andλ. A (λ= 0, ε= 0); B (λ= 0.02, ε= 0);
C(λ= 0.02, ε= 0.02)and D(λ= 0.02, ε= 0.2)which illustrates how adding artificial dissipation ensures stability.
However, as can be seen in D for a high value ofε the damping of the high frequency modes might be severe.

IV. A PRACTICAL APPLICATION: THE CHARACTERISTIC

FORMULATION OF G.R.

When solving Einstein equations, one can take advantage of the coordinate invariance
of the theory to simplify the modeling of a specific problem. In particular, one is free to
choose a foliation of the spacetime that is better suited to the problem.

In the numerical implementation of G.R., the most common approach is to choose a
foliation by spacelike hypersurfaces at constant times. In this approach, Einstein equa-
tions form a second-order PDE system for theintrinsic geometryof each surface and its
embedding in the spacetime, theextrinsic curvature. Einstein equations are split into two
distinct sets of equations. One set consists ofconstraintequations that limit the possible
configurations of the field variables on each hypersurface. The second set constitutes the
evolutionequations that determine the development of the field variables onto the next
hypersurface.3

3 For a complete description of this formalism see [11].
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The main drawback of the numerical implementation of the Cauchy formulation is the
impossibility of having an infinite grid to completely cover the spacelike hypersurfaces.
Thus, in practice, one chooses an exterior boundary in order to deal with a finite domain. This
introduces further problems, since special conditions on the boundary must be imposed in
order to avoid reflections which spoil long-term evolutions. Although in the one-dimensional
case there are sound methods to achieve this (e.g., the Sommerfeld condition), in the general
case, any local boundary condition still introduces reflections, turning the task of obtaining
long accurate evolutions into an almost impossible one. A related problem arising from an
outer boundary at a finite distance is that the radiation cannot be rigorously calculated.

When studying gravitational radiation a more natural choice adapted to the wave prop-
agation is to adopt a sequence of characteristic hypersurfaces to cover the spacetime. This
approach is known as thecharacteristic formulation of G.R., pioneered by Bondi and Sachs
[2, 3]. The main ingredients of this formulation are the foliation of the spacetime by a
sequence of characteristic hypersurfaces and the use of compactification techniques (which
enable the inclusion of infinity in a finite grid) to rigorously describe asymptotic properties
of radiation [4]. The equations naturally split intohypersurface equationsandevolution
equations. We now outline the main aspects of the numerical implementation of this formu-
lation (based on [7, 12], where a detailed description of the problem has been presented) and
employ the constructed algorithm to discretize the PDE equations governing the evolution
of the fields.

A coordinate system is introduced by labeling the outgoing lightlike hypersurfaces with
a parameteru, each null ray on a specific hypersurface is labeled withxA (A= 2, 3), and
we chooser as a surface area coordinate (i.e., surfaces atr = const have area 4πr 2). In the
resultingxa= (u, r, xA) coordinates, the metric takes the Bondi–Sachs form [2, 3]

ds2 = −(e2βV/r − r 2hABU AU B
)

du2− 2e2β du dr

− 2r 2hABU B du dxA + r 2hAB dxA dxB, (25)

wherehABhBC= δA
C and det(hAB)= det(qAB), with qAB a unit sphere metric.

The metric components are re-expressed as

h22 = 4

P2
(<[ J] + K ),

h23 = h32 = 4

P2
=[ J],

h33 = 4

P2
(K −<[ J]),

U2 = P

2
<[U ],

U3 = P

2
=[U ],

(26)

whereP= sec2(θ/2) in standard angular spherical coordinates(θ, φ). Here, the metric is
expressed in terms of two real(β andV) and two complex(U and J) variables (where
K =

√
1+ J J̄). The complex fieldJ measures the departure of spherical symmetry of

the surfaces given byr = const andu= const,V represents the mass distribution of the
system,β measures the expansion of the light rays, andU measures the shift in the angular
directions from one hypersurface to another (at constantr ).
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The hypersurface equations are expressed as

β,r = Fβ [ J] (27)

U,r = FU [β, J] (28)

(r 2Q),r = FQ[U, β, J] (29)

V,r = FV [Q,U, β, J], (30)

where Q≡ r 2e−2β(JŪ ,r + KU,r ) which is introduced to deal with a first-order system
of hypersurface equations. The functionsFβ, FU , FQ, and FV involve derivatives taken
only on a particular hypersurfaceN . Then, they can be easily integrated ifJ is known
onN (assuming consistent boundary conditions are provided) in the following way. The
integration strategy proceeds by first obtainingβ from Eq. (27), thenU from Eq. (28),
followed by the calculation ofQ using Eq. (29), and finally,V using Eq. (30). The evolution
to the next hypersurface is prescribed by a first-order (in time) equation forJ that takes the
form

2(r J ),ur − V

r
(r J ),rr = r J

(
J,u
K
( J̄,r K − J̄ K,r )+ c.c.

)
+ FJ [V, Q,U, β, J], (31)

whereFJ involve derivatives onN only.
A code that implements Einstein equations was written using (second-order) finite differ-

ence approximations. Angular and radial derivatives are approximated along the following
lines [12]:

• Angular derivatives. We follow the formalism given in [13, 14]. To expedite the numer-
ical implementation of angular derivatives, instead of working with the standard spherical
angular coordinates(θ, φ), we work in stereographic coordinates,

xA = (q, p) = (tan(θ/2) cos(φ), tan(θ/2) sin(φ)), (32)

and angular derivatives are written in terms of the (complex differential)eth operators
and [15, 16]; for instance,

∂β

∂q
= β + β

P
. (33)

This allows us to employ a set of numerical techniques introduced in [17] which are specially
tailored to: (i) handle the numerical approximation of angular derivative operators and
(ii) deal with the fact that a single coordinate patch cannot be used to smoothly cover the
sphere.
• Radial derivatives. These are approximated via centered second-order differences

along each null ray (i.e., holdingxA= const); for instance,

βn
i = βn

i−1+1r Fβ |ni−1/2. (34)

The evolution equation deserves special consideration. Its discretization (in between
levelsn andn+ 1) is obtained using dissipation in the following way: schematically, it can
be re-expressed as

2g,ur − (V/r )g,rr = g

r 2
(ḡ,ug,r + c.c.)+ FJ [β, J,U,V ], (35)
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whereg ≡ r J . The functionFJ can be straightforwardly approximated at each grid point
(n+ 1/2, i − 1/2) to second-order accuracy. Then, in order to introduce dissipation in
the algorithm, we proceed to consider a modified version (along the lines described in
Section II),

2g,ur − (V/r )g,rr = g

r 2
(ḡ,ug,r + c.c.)+ FJ(β, J,U,V)+ ε1r 2

1u
g,rrr . (36)

We center the derivatives at the point(n+ 1/2, i − 1/2), as dictated by the DA scheme and
obtaing,u|n+1/2

i−1/2 by means of an iterative procedure. In the first iteration we setg,u= g,u|n+1/2
i−1

and get a first approximation ofgn+1
i via the evolution equation. Then, we use this value to

obtain a guess forg,u|n+1/2
i−1/2 which is then used to get a better approximation forgn+1

i . This
procedure is repeated a sufficient number of times to ensure convergence.

Unfortunately, when solving a three-dimensional problem, the computational require-
ments of integrating from the origin(r = 0) are formidable. However, it is possible to start
the integration from a finite value ofr , assuming consistent values ofβ,U, Q,V , and J
are known on this boundary (which is refered to as the worldtube boundary), as well as the
value ofJ on an initial hypersurface [18].

To illustrate the usefulness of the presented algorithm, we apply it to model (i) the
propagation of linear waves on a Minkowski background and (ii) the problem of scattering
off a Schwarzschild black hole in three dimensions.

A. Linear Waves on a Minkowski Background

In the past, analytical solutions of linearized Einstein equations (in the characteristic
formulation) have been found which describe waves propagating on a flat background [7].
These solutions provide an important test bed for the algorithm, since the numerically
obtained solutions must converge to the analytic values given by

β = 0, V = r (37)

with J andU obtained from a solution(9) of the scalar wave equation by

J,r = (r 2 29),r

2r 2
, (38)

U,r = −2
( 9 + 29)

r 2
. (39)

In order to test the algorithm, we choose a solution of the wave equation in three dimen-
sions that represents an outgoing wave with angular momentum 0≤ l ≤ 6 of the form

8 = (∂z)
6 α

u2r
, (40)

where∂z is the z-translation operator. The resulting solution is well behaved above the
singular light coneu= 0.

Choosing initial data of very small amplitude(α≈ 10−9), we used these solutions to give
data atu= 1 (with the inner boundary set atR= 1.5) and compared the numerical and
exact solutions over time for different values ofε. The computation was performed on grids



70 LUIS LEHNER

FIG. 4. The logarithm of|E| ≡ |Jnum− Janal| (the numerical and analytic values ofJ) is shown for different
values ofε. Forε= 0.05 the evolution is stable, as opposed to the unstable evolutions correspondent toε= 0 and
0.005.

of size Nx equal to 41, 53, 65 (with the number of angular pointsNξ = (Nx − 1)/2+ 5,
and the ratio1u/(41r )= 1/8). The L2 norm of the error was calculated over the entire
grid and plotted against time for different values of the dissipation parameter. Figure 4
shows the logarithm of the error inJ versus time (for runs withNx = 65). For ε= 0 the
evolution is unstable, as can be seen by the exponential growth of the error. Forε= 0.005 the
instability appears at a later time, also with an exponential growth. However, forε= 0.05
the run proceeds stably and the error remains under control. It is important to note that the
magnitude of the dissipation needed to achieve a stable run is very small and therefore the
“damping” of the solution in not severe.

B. Nonlinear Scattering Off a Schwarzschild Black Hole

The characteristic initial value problem on an outgoing null hypersurface requires inner
boundary conditions on the worldtube. Here we consider an example in which the inner
boundary0 consists of an ingoing nullcone (see Fig. 5). We adopt coordinatesxA which
follow the ingoing null geodesics and foliate0 (chosen to correspond to ingoingr = 2m
surface in a Schwarzschild spacetime) by slices separated by constant parameteru. In these
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FIG. 5. Scattering off a Schwarzschild black hole. The bold dashed line illustrates the incoming pulse.

coordinates, the Schwarzschild line element takes the form

ds2 = −
(

1− 2m

r

)
du2− 2du dr+ r 2qAB dxA dxB. (41)

The initial data correspond to settingJ= 0 as data onu= 0, with the boundary conditions
β =U = Q= 0 andV = r − 2m on0.

We pose the nonlinear problem of gravitational wave scattering off a Schwarzschild
black hole by retaining these boundary conditions on0, but we choose null data atu= 0
corresponding to an incoming pulse with compact support,4

J(u = 0, r, xA) =


λ
(
1− Ra

r

)4(
1− Rb

r

)4
√

4π
2l + 1 2Yl ,m, if r ∈ [Ra, Rb]

0, otherwise,
(42)

where2Yl ,m is the spin-two spherical harmonic [15].
The code was run for different values ofλ under different choices of the dissipation

parameter. In all cases, unstable evolutions resulted from the choiceε= 0; however, for
nonzero values ofε, the code ran without any stability problem, as illustrated in Fig. 6 (for
a run whereλ= 1, l = 2,m= 0).

Yet, as expected of any dissipative algorithm, the solution decreases in amplitude with
time. This highlights the need to carefully tune the value ofε. Notwithstanding this fact, it
is important to stress once again that this set of runs would not have been possible without
dissipation.

This problem was originally studied in the perturbative regime by Price [19]. There is
no known analytic solution to the problem in the nonlinear regime and applying numerical
methods is the only way to study it. The accuracy of the dissipative scheme can be assessed
indirectly by inspection of the gravitational waves produced by the system. Gravitational
waves can be described in terms of twopolarization modes(refered to asplus andcross

4 Recall that the data on the initial hypersurface can be chosen freely in the characteristic formulation [5].
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FIG. 6. Plots of the field variableJ at a representative angle vs a compactified radial coordinatex= r/(1+r ).
The value of the mass ism= 0.5, the amplitude of the initial pulse isλ= 5, Ra= 4, andRb= 8. The runs correspond
to different choices ofε. The solid lines indicates the initial data atu= 1. (a) shows the run forε= 0; after a short
time the obtained values diverge. (b) corresponds to the choiceε= 0.005, showing a run that neither show signs
of instability nor much damping of the pulse. (c), in turn, corresponds toε= 0.02, although there is no sign of
instability the solution has been damped considerably.

modes) [11]. However, when considering spacetimes with axisymmetry, the cross mode
must vanish and this fact can be used to test the algorithm. Calculating the gravitational ra-
diation is a rather involved problem that exceeds the scope of this work. A set of algorithms
to numerically calculate the gravitational wave forms was constructed in the characteris-
tic formulation in [12] and tested under different situations. We used these algorithms in
the present work to calculate the polarization modes for the choiceε=1r and with an
axisymmetric pulse withl = 2,m= 0 as the initial data. The cross polarization mode ac-
tually converges to zero in second order, indicating an accurate discretization of Einstein
equations, as can be seen in Fig. 7.
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FIG. 7. Convergence of the cross polarization mode to zero (in these runsε was chosen equal to1r ). The
slope is 1.99, confirming second-order accuracy of the obtained wave form.

V. CONCLUSION

The algorithm described in this work represents a valuable tool for the study of non-
linear problems in the characteristic formulation. Its use enables long-term evolution that
would otherwise be impossible. Yet, there is still much room for improvement as the
number of numerical techniques adapted to characteristic-type evolutions is scarce (as
opposed to the situtation in the Cauchy-type evolution, where one has at hand a great
number of algorithms). The variety of physical problems, where propagating waves are
to be described, highlights the need of further investigations on “characteristic” algo-
rithms.

Of particular interest is the application of these types of algorithms to the character-
istic module constructed to model the collision of a binary black hole self-gravitating
system. In this problem, it is imperative to have robust enough schemes capable of deal-
ing with highly nonlinear fields. The complexity of the problem inspired the creation of
the Binary Black Hole Grand Challenge Alliance, where a group of U.S. universities and
outside collaborators are joining efforts to tackle the problem [20]. A strategy to study this
problem is a “hybrid” scheme that implements at the same time a Cauchy evolution (for
the region near the black holes) and a characteristic evolution (for the exterior region).
This approach is calledCauchy–characteristic matching(CCM) [21, 22, 8], and in princi-
ple, its implementation manages to avoid the problems and to exploit the best features of
each evolution scheme. CCM has been shown to work (and outperform traditional outer
boundary conditions) in situations where special symmetries were assumed [23, 10] and
its full three-dimensional application in G.R. is currently under study. The characteristic
code is one of the pieces of this bigger algorithm and the need for robust performance
prompted this investigation. However, its use is not limited to G.R. Any hyperbolic sys-
tem describing waves will have an evolution equation similar to Eq. (3). The algorithm
presented in this work should provide a useful tool in the numerical modeling of these
systems.
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6. R. Gómez, P. Papadopoulos, and J. Winicour, Null cone evolution of axisymmetric vaccum space-times,
J. Math. Phys.35, 4184 (1994).

7. N. T. Bishop, R. G´omez, L. Lehner, and J. Winicour, Cauchy characteristic extraction in numerical relativity,
Phys. Rev. D54, 6153 (1996).

8. R. d’Inverno and J. Vickers, Combining Cauchy and charactertistic codes. IV. The characteristic field equations
in axial symmetry,Phys. Rev. D56, 772 (1997).
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